Ticagrelor promotes atherosclerotic plaque stability in a mouse model of advanced atherosclerosis
نویسندگان
چکیده
OBJECTIVE There is increasing evidence supporting the role of platelets in atherosclerotic vascular disease. The G-protein-coupled receptor P2Y12 is a central mediator of platelet activation and aggregation but has also been linked to platelet-independent vascular disease. Ticagrelor is an oral P2Y12 antagonist that is used as a standard treatment in patients after acute myocardial infarction. However, the effects of ticagrelor on advanced atherosclerosis have not been investigated. MATERIALS AND METHODS Twenty-week-old apolipoprotein-E-deficient mice received standard chow or standard chow supplemented with 0.15% ticagrelor (approximately 270 mg/kg/day) for 25 weeks. The lesion area was evaluated in the aortic sinus by Movat's pentachrome staining and lesion composition, thickness of the fibrous cap, and size of the necrotic core evaluated by morphometry. RAW 264.7 macrophages were serum starved and treated with ticagrelor in vitro for the detection and quantification of apoptosis. In addition, oxLDL uptake in RAW 264.7 macrophages was evaluated. RESULTS A trend toward the reduction of total lesion size was detected. However, data did not reach the levels of significance (control, n=11, 565,881 μm(2) [interquartile range {IQR} 454,778-603,925 μm(2)] versus ticagrelor, n=13, 462,595 μm(2) [IQR 379,740-546,037 μm(2)]; P=0.1). A significant reduction in the relative area of the necrotic core (control, n=11, 0.46 [IQR 0.4-0.51] versus ticagrelor, n=13, 0.34 [IQR 0.31-0.39]; P=0.008), and a significant increase in fibrous caps thickness (control, n=11, 3.7 μm [IQR 3.4-4.2 μm] versus ticagrelor, n=13, 4.7 [IQR 4.3-5.5 μm], P=0.04) were seen in ticagrelor-treated mice. In vitro studies demonstrated a reduction in apoptotic RAW 264.7 macrophages (control 0.07±0.03 versus ticagrelor 0.03±0.03; P=0.0002) when incubated with ticagrelor. Uptake of oxLDL in RAW 264.7 was significantly reduced when treated with ticagrelor (control 9.2 [IQR 5.3-12.9] versus ticagrelor 6.4 [IQR 2.5-9.5], P=0.02). CONCLUSION The present study demonstrates for the first time a plaque-stabilizing effect of ticagrelor in a model of advanced vascular disease, potentially induced by a reduction of oxLDL uptake or an inhibition of apoptosis as seen in vitro.
منابع مشابه
An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques
Chronic unresolved inflammation plays a causal role in the development of advanced atherosclerosis, but the mechanisms that prevent resolution in atherosclerosis remain unclear. Here, we use targeted mass spectrometry to identify specialized pro-resolving lipid mediators (SPM) in histologically-defined stable and vulnerable regions of human carotid atherosclerotic plaques. The levels of SPMs, p...
متن کاملAtherosclerotic Plaque Destabilization in Mice: A Comparative Study
Atherosclerosis-associated diseases are the main cause of mortality and morbidity in western societies. The progression of atherosclerosis is a dynamic process evolving from early to advanced lesions that may become rupture-prone vulnerable plaques. Acute coronary syndromes are the clinical manifestation of life-threatening thrombotic events associated with high-risk vulnerable plaques. Hyperli...
متن کاملGenetic inactivation of IL-1 signaling enhances atherosclerotic plaque instability and reduces outward vessel remodeling in advanced atherosclerosis in mice.
Clinical complications of atherosclerosis arise primarily as a result of luminal obstruction due to atherosclerotic plaque growth, with inadequate outward vessel remodeling and plaque destabilization leading to rupture. IL-1 is a proinflammatory cytokine that promotes atherogenesis in animal models, but its role in plaque destabilization and outward vessel remodeling is unclear. The studies pre...
متن کاملCaspase-3 Deletion Promotes Necrosis in Atherosclerotic Plaques of ApoE Knockout Mice
Apoptosis of macrophages and vascular smooth muscle cells (VSMCs) in advanced atherosclerotic plaques contributes to plaque progression and instability. Caspase-3, a key executioner protease in the apoptotic pathway, has been identified in human and mouse atherosclerotic plaques but its role in atherogenesis is not fully explored. We therefore investigated the impact of caspase-3 deletion on at...
متن کاملGenetic loss of Gas6 induces plaque stability in experimental atherosclerosis.
The growth arrest-specific gene 6 (Gas6) plays a role in pro-atherogenic processes such as endothelial and leukocyte activation, smooth muscle cell migration and thrombosis, but its role in atherosclerosis remains uninvestigated. Here, we report that Gas6 is expressed in all stages of human and mouse atherosclerosis, in plaque endothelial cells, smooth muscle cells and macrophages. Gas6 express...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2016